Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/102984
Title: Chromatically unique multibridge graphs
Authors: Dong, F.M.
Teo, K.L.
Little, C.H.C.
Hendy, M.
Koh, K.M. 
Keywords: χ-closed
χ-unique
Chromatic polynomials
Polygon-tree
Issue Date: 23-Jan-2004
Citation: Dong, F.M.,Teo, K.L.,Little, C.H.C.,Hendy, M.,Koh, K.M. (2004-01-23). Chromatically unique multibridge graphs. Electronic Journal of Combinatorics 11 (1 R) : -. ScholarBank@NUS Repository.
Abstract: Let θ(a1, a2, ⋯, ak) denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a1, a2, ⋯, ak respectively. Assume that 2 ≤ a1 ≤ a2 ≤ ⋯ ≤ a k. We prove that the grap θ(a1, a2, ⋯, ak) is chromatically unique if ak < a 1 + a2, and find examples showing that θ(a 1, a2, ⋯, ak) may not be chromatically unique if ak = a1 + a2.
Source Title: Electronic Journal of Combinatorics
URI: http://scholarbank.nus.edu.sg/handle/10635/102984
ISSN: 10778926
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.