Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00033-011-0175-7
Title: Boundary blow-up solutions of p-Laplacian elliptic equations with lower order terms
Authors: Li, H.
Pang, P.Y.H. 
Wang, M.
Keywords: Blow-up solution
Comparison principle
Issue Date: Apr-2012
Citation: Li, H., Pang, P.Y.H., Wang, M. (2012-04). Boundary blow-up solutions of p-Laplacian elliptic equations with lower order terms. Zeitschrift fur Angewandte Mathematik und Physik 63 (2) : 295-311. ScholarBank@NUS Repository. https://doi.org/10.1007/s00033-011-0175-7
Abstract: We study the existence, uniqueness, and asymptotic behavior of blow-up solutions for a general quasilinear elliptic equation of the type -Δ pu = a(x)u m-b(x)f(u) with p > 1 and 0 < m < p-1. The main technical tool is a new comparison principle that enables us to extend arguments for semilinear equations to quasilinear ones. Indeed, this paper is an attempt to generalize all available results for the semilinear case with p = 2 to the quasilinear case with p > 1. © 2011 Springer Basel AG.
Source Title: Zeitschrift fur Angewandte Mathematik und Physik
URI: http://scholarbank.nus.edu.sg/handle/10635/102941
ISSN: 00442275
DOI: 10.1007/s00033-011-0175-7
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

6
checked on Oct 15, 2018

WEB OF SCIENCETM
Citations

5
checked on Oct 15, 2018

Page view(s)

35
checked on Apr 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.