Please use this identifier to cite or link to this item: https://doi.org/10.1007/s10957-007-9280-3
Title: Asymptotic behavior of Helmberg-Kojima-Monteiro (HKM) paths in interior-point methods for monotone semidefinite linear complementarity problems: General theory
Authors: SIM CHEE KHIAN 
Zhao, G. 
Keywords: Analyticity
HKM direction
Off-central paths
Ordinary differential equations
Semidefinite linear complementarity problems
Issue Date: Apr-2008
Citation: SIM CHEE KHIAN, Zhao, G. (2008-04). Asymptotic behavior of Helmberg-Kojima-Monteiro (HKM) paths in interior-point methods for monotone semidefinite linear complementarity problems: General theory. Journal of Optimization Theory and Applications 137 (1) : 11-25. ScholarBank@NUS Repository. https://doi.org/10.1007/s10957-007-9280-3
Abstract: An interior-point method (IPM) defines a search direction at each interior point of the feasible region. These search directions form a direction field, which in turn gives rise to a system of ordinary differential equations (ODEs). Thus, it is natural to define the underlying paths of the IPM as the solutions of the system of ODEs. In Sim and Zhao (Math. Program. Ser. A, [2007], to appear), these off-central paths are shown to be well-defined analytic curves and any of their accumulation points is a solution to the given monotone semidefinite linear complementarity problem (SDLCP). Off-central paths for a simple example are also studied in Sim and Zhao (Math. Program. Ser. A, [2007], to appear) and their asymptotic behavior near the solution of the example is analyzed. In this paper, which is an extension of Sim and Zhao (Math. Program. Ser. A, [2007], to appear), we study the asymptotic behavior of the off-central paths for general SDLCPs using the dual HKM direction. We give a necessary and sufficient condition for when an off-central path is analytic as a function of √μ at a solution of the SDLCP. Then, we show that, if the given SDLCP has a unique solution, the first derivative of its off-central path, as a function of √μ, is bounded. We work under the assumption that the given SDLCP satisfies the strict complementarity condition. © 2007 Springer Science+Business Media, LLC.
Source Title: Journal of Optimization Theory and Applications
URI: http://scholarbank.nus.edu.sg/handle/10635/102888
ISSN: 00223239
DOI: 10.1007/s10957-007-9280-3
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

4
checked on May 21, 2018

WEB OF SCIENCETM
Citations

4
checked on May 21, 2018

Page view(s)

44
checked on May 25, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.