Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.cma.2013.11.024
Title: Analysis of the small viscosity and large reaction coefficient in the computation of the generalized Stokes problem by a novel stabilized finite element method
Authors: Duan, H.-Y.
Hsieh, P.-W.
Tan, R.C.E. 
Yang, S.-Y.
Keywords: Generalized Stokes problem
Large reaction coefficient
Small viscosity
Stabilization parameter
Stabilized finite element method
Issue Date: 1-Apr-2014
Citation: Duan, H.-Y., Hsieh, P.-W., Tan, R.C.E., Yang, S.-Y. (2014-04-01). Analysis of the small viscosity and large reaction coefficient in the computation of the generalized Stokes problem by a novel stabilized finite element method. Computer Methods in Applied Mechanics and Engineering 271 : 23-47. ScholarBank@NUS Repository. https://doi.org/10.1016/j.cma.2013.11.024
Abstract: In this paper, we propose and analyze a novel stabilized finite element method (FEM) for the system of generalized Stokes equations arising from the time-discretization of transient Stokes problem. The system involves a small viscosity, which is proportional to the inverse of large Reynolds number, and a large reaction coefficient, which is the inverse of small time step. The proposed stabilized FEM employs the C0 piecewise linear elements for both velocity field and pressure on the same mesh and uses the residuals of the momentum equation and the divergence-free equation to define the stabilization terms. The stabilization parameters are fixed and element-independent, without a comparison of the viscosity, the reaction coefficient and the mesh size. Using the finite element solution of an auxiliary boundary value problem as the interpolating function for velocity and the H1-seminorm projection for pressure, instead of the usual nodal interpolants, we derive error estimates for the stabilized finite element approximations to velocity and pressure in the L2 and H1 norms and most importantly, we explicitly establish the dependence of error bounds on the viscosity, the reaction coefficient and the mesh size. Our analysis reveals that this stabilized FEM is particularly suitable for the generalized Stokes system with a small viscosity and a large reaction coefficient, which has never been achieved before in the error analysis of other stabilization methods in the literature. We then numerically confirm the effectiveness of the proposed stabilized FEM. Comparisons made with other existing stabilization methods show that the newly proposed method can attain better accuracy and stability. © 2013 Elsevier B.V.
Source Title: Computer Methods in Applied Mechanics and Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/102859
ISSN: 00457825
DOI: 10.1016/j.cma.2013.11.024
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Aug 14, 2018

WEB OF SCIENCETM
Citations

3
checked on Aug 6, 2018

Page view(s)

61
checked on Feb 25, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.