Please use this identifier to cite or link to this item:
Title: An efficient Chebyshev-Tau spectral method for Ginzburg-Landau-Schrödinger equations
Authors: Wang, H. 
Keywords: Chebyshev-Tau spectral method
Ginzburg-Landau-Schrödinger equations
Zero/nonzero far-field boundary conditions
Issue Date: Feb-2010
Citation: Wang, H. (2010-02). An efficient Chebyshev-Tau spectral method for Ginzburg-Landau-Schrödinger equations. Computer Physics Communications 181 (2) : 325-340. ScholarBank@NUS Repository.
Abstract: We propose an efficient time-splitting Chebyshev-Tau spectral method for the Ginzburg-Landau-Schrödinger equation with zero/nonzero far-field boundary conditions. The key technique that we apply is splitting the Ginzburg-Landau-Schrödinger equation in time into two parts, a nonlinear equation and a linear equation. The nonlinear equation is solved exactly; while the linear equation in one dimension is solved with Chebyshev-Tau spectral discretization in space and Crank-Nicolson method in time. The associated discretized system can be solved very efficiently since they can be decoupled into two systems, one for the odd coefficients, the other for the even coefficients. The associated matrices have a quasi-tridiagonal structure which allows a direction solution to be obtained. The computation cost of the method in one dimension is O (N log (N)) compared with that of the non-optimized one, which is O (N2). By applying the alternating direction implicit (ADI) technique, we extend this efficient method to solve the Ginzburg-Landau-Schrödinger equation both in two dimensions and in three dimensions, respectively. Numerical accuracy tests of the method in one dimension, two dimensions and three dimensions are presented. Application of the method to study the semi-classical limits of Ginzburg-Landau-Schrödinger equation in one dimension and the two-dimensional quantized vortex dynamics in the Ginzburg-Landau-Schrödinger equation are also presented. © 2009 Elsevier B.V. All rights reserved.
Source Title: Computer Physics Communications
ISSN: 00104655
DOI: 10.1016/j.cpc.2009.10.007
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Feb 13, 2019


checked on Feb 13, 2019

Page view(s)

checked on Sep 28, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.