Please use this identifier to cite or link to this item:
Title: A survey of partial difference sets
Authors: Ma, S.L. 
Issue Date: Oct-1994
Citation: Ma, S.L. (1994-10). A survey of partial difference sets. Designs, Codes and Cryptography 4 (4) : 221-261. ScholarBank@NUS Repository.
Abstract: Let G be a finite group of order ν. A k-element subset D of G is called a (ν, k, λ, μ)-partial difference set if the expressions gh-1, for g and h in D with g≠h, represent each nonidentity element in D exactly λ times and each nonidentity element not in D exactly μ times. If e∉D and g∈D iff g-1∈D, then D is essentially the same as a strongly regular Cayley graph. In this survey, we try to list all important existence and nonexistence results concerning partial difference sets. In particular, various construction methods are studied, e.g., constructions using partial congruence partitions, quadratic forms, cyclotomic classes and finite local rings. Also, the relations with Schur rings, two-weight codes, projective sets, difference sets, divisible difference sets and partial geometries are discussed in detail. © 1994 Kluwer Academic Publishers.
Source Title: Designs, Codes and Cryptography
ISSN: 09251022
DOI: 10.1007/BF01388454
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Oct 15, 2018

Page view(s)

checked on Oct 19, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.