Please use this identifier to cite or link to this item:
Title: Opsonized virulent Edwardsiella tarda strains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates
Authors: Rao, P.S.S.
Tit Meng Lim
Ka Yin Leung 
Issue Date: 2001
Source: Rao, P.S.S., Tit Meng Lim, Ka Yin Leung (2001). Opsonized virulent Edwardsiella tarda strains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates. Infection and Immunity 69 (9) : 5689-5697. ScholarBank@NUS Repository.
Abstract: Edwardsiella tarda is responsible for hemorrhagic septicemia (edwardsiellosis) in fish and also causes diseases in higher vertebrates such as birds, reptiles, and mammals, including humans. Interactions of E. tarda with blue gourami phagocytes were studied by light microscopy as well as by adherence, intracellular replication, and superoxide anion assays. Both nonopsonized virulent (PPD130/91 and AL9379) and avirulent (PPD125/87 and PPD76/87) bacteria could adhere to and survive and replicate within phagocytes, while only opsonized virulent strains replicated within the phagocytes. Furthermore, only avirulent E. tarda elicited a higher rate of production of reactive oxygen intermediates (ROIs) by phagocytes, indicating that they were unable to avoid and/or resist reactive oxygen radical-based killing by the fish phagocytes. TnphoA transposon mutagenesis was used to construct a library of 200 alkaline phosphatase (PhoA+) fusion mutants from a total of 182,000 transconjugants derived from E. tarda PPD130/91. Five of these mutants induced more ROI production in phagocytes than the wild-type strain. Two mutants had lower replication ability inside phagocytes and moderately higher 50% lethal dose values than the wild-type strain. Sequence analysis revealed that three of these mutants had insertions at sequences having homology to PhoS, dipeptidase, and a surface polymer ligase of lipid A core proteins of other pathogens. These three independent mutations might have changed the cell surface characteristics of the bacteria, which in turn induced phagocytes to produce increased ROIs. Sequences from two other mutants had no homology to known genes, indicating that they may be novel genes for antiphagocytic killing. The present study showed that there are differences in the interactions of virulent and avirulent E. tarda organisms with fish phagocytes and PhoA+ fusion mutants that could be used successfully to identify virulence genes. The information elucidated here would help in the development of suitable strategies to combat the disease caused by E. tarda.
Source Title: Infection and Immunity
ISSN: 00199567
DOI: 10.1128/IAI.69.9.5689-5697.2001
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Mar 7, 2018


checked on Mar 7, 2018

Page view(s)

checked on Feb 25, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.