Please use this identifier to cite or link to this item: https://doi.org/10.1079/SSR2003146
Title: Biopolymer volume change and water clustering function of primed Vigna radiata seeds
Authors: Sun, W.Q. 
Liang, Y.
Huang, S.
Fu, J.
Keywords: Anhydrobiosis
Glassy state
Nuclear magnetic resonance
Seed ageing
Seed priming
Vigna radiata
Water clustering function
Issue Date: Dec-2003
Source: Sun, W.Q., Liang, Y., Huang, S., Fu, J. (2003-12). Biopolymer volume change and water clustering function of primed Vigna radiata seeds. Seed Science Research 13 (4) : 287-302. ScholarBank@NUS Repository. https://doi.org/10.1079/SSR2003146
Abstract: Osmotic priming reduces the longevity of Vigna radiata (mung bean) seeds during subsequent dry storage. The present study has investigated the relationship between volumetric changes, modified water sorption properties and the decrease in seed longevity after priming. Volumetric analysis of control embryos revealed two major dehydration-related volumetric contractions in the biopolymer matrix, reflecting structural reorganization in biopolymer matrix during drying. These contractions occurred at hydration from 0.29 to 0.23 g g-1 dw and from 0.18 to 0.11 g g-1 dw, respectively. Volumetric contractions were reduced significantly after priming and also occurred at higher water contents (i.e. 0.48-0.32 g g-1 dw and 0.21-0.11 g g-1 dw). Consequently, at the same water content, primed seed embryos had higher specific biopolymer volume and lower specific density than control embryos. Water sorption study showed that priming did not change the monolayer hydration value, but altered the properties of multilayer water sorption in seed axes. The analysis of water clustering function suggested that priming enhanced the water-water association in seed axes, but not in cotyledon tissues. Solid-state 1H-NMR (nuclear magnetic resonance) investigation confirmed that priming did not cause a significant change of water dynamic properties in cotyledon tissues at water contents below 0.20 g g-1 dw. The relevance of volumetric modifications of the biopolymer matrix and changes in water clustering function to the reduced seed longevity after priming is discussed. It is proposed that priming-induced increases in surface reactivity may enhance deteriorative chemical reactions in re-dried seed tissues.
Source Title: Seed Science Research
URI: http://scholarbank.nus.edu.sg/handle/10635/100176
ISSN: 09602585
DOI: 10.1079/SSR2003146
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

5
checked on Mar 21, 2018

WEB OF SCIENCETM
Citations

5
checked on Mar 21, 2018

Page view(s)

39
checked on Apr 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.